Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Knowledge-Based Systems ; 259, 2023.
Article in English | Web of Science | ID: covidwho-2308771

ABSTRACT

The clustering of large numbers of heterogeneous features is a hot topic in multi-view communities. Most existing multi-view clustering (MvC) methods employ matrix factorization or anchor strategies to handle large-scale datasets. The former operates on the original data and is, therefore, sensitive to noise and feature redundancy, which is reflected in the final clustering performance. The latter requires post -processing steps to generate the clustering results, which may be suboptimal owing to the isolation steps. To address the above problems, we propose one-stage multi-view subspace clustering with dictionary learning (OSMvSC). Specifically, we integrate dictionary learning, representation coefficient matrix learning, and matrix factorization as a unified learning framework, which directly learns the dictionary and representation coefficient matrix to encode the original multi-view data, and obtains the clustering results with linear time complexity without any postprocessing step. By manipulating the class centroid with the nuclear norm, a more compact and discriminative class centroid representation can be obtained to further improve clustering performance. An effective optimization algorithm with guaranteed convergence is designed to solve the proposed method. Substantial experiments on various real-world multi-view datasets demonstrate the effectiveness and superiority of the proposed method. The source code is available at https://github.com/justcallmewilliam/OSMvSC.(c) 2022 Elsevier B.V. All rights reserved.

2.
Int J Inf Technol ; 14(3): 1221-1228, 2022.
Article in English | MEDLINE | ID: covidwho-1838451

ABSTRACT

Low-rank representation based methods have been used on a variety of medical imaging databases for the segmentation and classification of biomedical images. The subspace segmentation of the data is performed by generating the block diagonal coefficient matrix. Whereas, the data is classified by performing the partitioning of the low-rank representation matrix. There exist several such methods for analysing medical images. The major difference between them lies in the construction of the data dictionary. Most of the time, the input data pattern is used as the dictionary for learning the representation matrix. The direct use of the input data for learning the representation degrades the performance of the model because medical images are subjected to outliers of multiple types, which include environmental lighting, image appearance and varying illumination. These types of errors induce noise in the data. It has been observed that the representation-based model is robust when the training data is clean. If the training data contains corrupted subsamples, the performance of the model drops down. We have addressed the mentioned problem by adopting a class-wise dictionary learning approach. In which the pattern of each class is learnt as the set of tuples in the dictionary. The model has been evaluated on several medical imaging datasets, which includes the Break-his dataset, ALL-IDB, biomedical images, covid CT and chest X-ray. The classification performance of the model is best for the biomedical database (99.16%) followed by the Covid dataset (94%), ALL-IDB database (93.47%) and Break-his dataset (93%).

3.
Appl Soft Comput ; 122: 108806, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1777981

ABSTRACT

COVID-19 pandemic caused by novel coronavirus (SARS-CoV-2) crippled the world economy and engendered irreparable damages to the lives and health of millions. To control the spread of the disease, it is important to make appropriate policy decisions at the right time. This can be facilitated by a robust mathematical model that can forecast the prevalence and incidence of COVID-19 with greater accuracy. This study presents an optimized ARIMA model to forecast COVID-19 cases. The proposed method first obtains a trend of the COVID-19 data using a low-pass Gaussian filter and then predicts/forecasts data using the ARIMA model. We benchmarked the optimized ARIMA model for 7-days and 14-days forecasting against five forecasting strategies used recently on the COVID-19 data. These include the auto-regressive integrated moving average (ARIMA) model, susceptible-infected-removed (SIR) model, composite Gaussian growth model, composite Logistic growth model, and dictionary learning-based model. We have considered the daily infected cases, cumulative death cases, and cumulative recovered cases of the COVID-19 data of the ten most affected countries in the world, including India, USA, UK, Russia, Brazil, Germany, France, Italy, Turkey, and Colombia. The proposed algorithm outperforms the existing models on the data of most of the countries considered in this study.

4.
Neural Comput Appl ; 33(20): 14037-14048, 2021.
Article in English | MEDLINE | ID: covidwho-1216218

ABSTRACT

Deep learning has provided numerous breakthroughs in natural imaging tasks. However, its successful application to medical images is severely handicapped with the limited amount of annotated training data. Transfer learning is commonly adopted for the medical imaging tasks. However, a large covariant shift between the source domain of natural images and target domain of medical images results in poor transfer learning. Moreover, scarcity of annotated data for the medical imaging tasks causes further problems for effective transfer learning. To address these problems, we develop an augmented ensemble transfer learning technique that leads to significant performance gain over the conventional transfer learning. Our technique uses an ensemble of deep learning models, where the architecture of each network is modified with extra layers to account for dimensionality change between the images of source and target data domains. Moreover, the model is hierarchically tuned to the target domain with augmented training data. Along with the network ensemble, we also utilize an ensemble of dictionaries that are based on features extracted from the augmented models. The dictionary ensemble provides an additional performance boost to our method. We first establish the effectiveness of our technique with the challenging ChestXray-14 radiography data set. Our experimental results show more than 50% reduction in the error rate with our method as compared to the baseline transfer learning technique. We then apply our technique to a recent COVID-19 data set for binary and multi-class classification tasks. Our technique achieves 99.49% accuracy for the binary classification, and 99.24% for multi-class classification.

SELECTION OF CITATIONS
SEARCH DETAIL